光固化3d打印工艺制备硼酸铝多孔陶瓷的方法与流程-j9九游会真人

文档序号:35752586发布日期:2023-10-16 17:13阅读:10来源:国知局

光固化3d打印工艺制备硼酸铝多孔陶瓷的方法
技术领域
1.本发明属于硼酸铝多孔陶瓷制备技术领域,尤其是涉及一种光固化3d打印工艺制备硼酸铝多孔陶瓷的方法。


背景技术:

2.硼酸铝材料属于莫来石型材料家族,具有共边八面体特征链。硼酸铝晶体属于正交晶系,其中al
18
b4o
33
的空间群为a21am,其晶格常数a=7.6942 nm,b=15.0100 nm,c=5.6689 nm,c轴为晶须轴。al
18
b4o
33
晶须的直径通常为100纳米到1微米,长度通常为10微米到30微米。
3.在微观尺寸上,硼酸铝晶须相较于常见工业无机晶须来讲尺寸较小。同时在密度较低的情况下,其强度也要优于大部分的其它无机晶须。特别是,在合成成本远低于碳化硅的情况下(几乎是碳化硅成本的十分之一),硼酸铝晶须比碳化硅晶须拥有更加优良的断裂韧性。另外,硼酸铝晶须可以在超高温的环境下保持稳定的内部结构,在某些化学环境复杂的情况下(强酸、强碱)仍可保持自己的力学性能稳定。硼酸铝晶须的制备原料价格低,而且晶须制备工艺简单,使得硼酸铝晶须的制备成本远低于工业生产的常见晶须,大大促进了硼酸铝晶须的市场推广。
4.近年来,除了作为复合材料的增强体,硼酸铝晶须在制备多孔陶瓷方面也展现出独特优势。由于其独特的高长径比特性,其自身便可搭接形成硼酸铝多孔陶瓷。目前,科研人员相继采用干压法、发泡法,凝胶注模法等工艺制备出了多种硼酸铝多孔陶瓷。随着科技的发展,各行业对于具有复杂形状以及孔结构的硼酸铝多孔陶瓷有了更加迫切的需求,但上述方法均难以制备具有复杂形状和孔结构的硼酸铝多孔陶瓷,从而限制了硼酸铝多孔陶瓷的发展。


技术实现要素:

5.本发明的目的在于克服现有技术的不足,提供了一种光固化3d打印工艺制备硼酸铝多孔陶瓷的方法,能够解决现有技术难以制备具有复杂形状和孔结构的硼酸铝多孔陶瓷的问题。
6.本发明是通过如下技术方案予以实现。
7.一种光固化3d打印工艺制备硼酸铝多孔陶瓷的方法,包括下述步骤:
8.(1)按照质量比为40~50:50~60的比例称取仲丁醇铝和乙酰乙酸乙酯,搅拌混合均匀,制得含铝源打印溶液;
9.(2)按照硼、铝摩尔比5~8:9称取氮化硼粉体,并加入到含铝源打印溶液中混合均匀,再加入分散剂、光引发剂和光敏助剂,球磨混合均匀得到硼酸铝光固化打印浆料;
10.(3)将硼酸铝光固化打印浆料倒入到光固化打印机中打印固化,得到打印坯体;
11.(4)将打印坯体高温煅烧,最终得到硼酸铝多孔陶瓷。
12.优选地,所述仲丁醇铝与乙酰乙酸乙酯的质量比为40~45:55~60。
13.优选地,所述硼、铝摩尔比为6~7:9。
14.优选地,所述分散剂为kos190、kos110、byk103中的任意一种或几种。
15.优选地,所述光引发剂为tpo、tpo-l中的任意一种或两种。
16.优选地,所述光敏助剂为双三羟甲基丙烷四丙烯酸酯、二缩三丙二醇二丙烯酸酯、新戊二醇二丙烯酸酯中的任意一种或几种。
17.优选地,所述分散剂的加入量为硼酸铝光固化打印浆料总体质量的1~3wt%;光引发剂的加入量为硼酸铝光固化打印浆料总体质量的0.5~1.5wt%;光敏助剂的加入量为硼酸铝光固化打印浆料总体质量的5~10wt%。
18.优选地,打印固化参数为:分层厚度为50~150μm,紫外光强为2~10 mw/cm2,每层曝光时间为5~15s。
19.优选地,所述高温煅烧温度为1200~1400℃,升温速率为2~10℃/min,保温时间为1~3h。
20.本发明的优点和积极效果是:
21.针对目前现有成型工艺难以制备具有复杂形状和孔结构的硼酸铝多孔陶瓷的不足,本技术提出采用光固化3d打印工艺来制备具有复杂形状和孔结构的硼酸铝多孔陶瓷。目前常用的陶瓷打印浆料主要由陶瓷粉体和光敏树脂组成,保证浆料具有良好的打印性能,所加入的陶瓷粉体的固相含量不能过高,否则会导致浆料粘度过大,从而影响打印精度。但过低的固相含量会导致打印坯体失重过大,样品致密度较低。针对此问题,本技术提出以仲丁醇铝为铝源,乙酰乙酸乙酯为光敏改性剂,通过乙酰乙酸乙酯与仲丁醇铝所带的羟基发生络合反应,将乙酰乙酸乙酯光敏基团嵌入到仲丁醇铝中,合成具有光固化特性的含铝源打印溶液。此种溶液既可以作为铝源来参加后续与氮化硼的固相反应,也可以作为光敏溶液来发生光固化反应,从而在保证打印浆料粘度低的同时还能具有良好的光固化特性。另外要注意的是,硼酸铝的化学式为9al2o3·
2b2o3,其硼、铝摩尔比为2:9。但在本技术中,所选用的硼、铝摩尔比为5~8:9。过量的硼源可以生成液相,从而促进具有高长径比的晶须生成。综上,本技术首先合成出了一种具有光固化特性的含铝源打印溶液,并在此基础上制备出打印性能优良的硼酸铝光固化打印浆料,最终采用光固化3d打印工艺制备出了具有复杂形状和孔结构的硼酸铝多孔陶瓷。
附图说明
22.图1为实施例1制备的硼酸铝多孔陶瓷的超景深显微镜照片;
23.图2为实施例1制备的硼酸铝多孔陶瓷放大8000倍的sem图;
24.图3为实施例2制备的硼酸铝多孔陶瓷的超景深显微镜照片;
25.图4为实施例2制备的硼酸铝多孔陶瓷放大8000倍的sem图;
26.图5为实施例1、实施例2和对比例1制备的硼酸铝光固化打印浆料的粘度曲线图;
27.图6为实施例1、实施例2和对比例2制备的硼酸铝光固化打印浆料的光固化性能曲线图。
具体实施方式
28.为了更好的理解本发明,下面结合附图对本发明进行进一步详述。在不冲突的情
况下,案例中的特征可以相互组合。以下实施例中所使用的原料均为市售的分析纯原料。
29.实施例1
30.一种光固化3d打印工艺制备硼酸铝多孔陶瓷的方法,包括下述步骤:
31.(1)按照质量比为45:55的比例称取仲丁醇铝45g和乙酰乙酸乙酯55g,在50℃下搅拌2小时,混合均匀,从而保证仲丁醇铝与乙酰乙酸乙酯发生络合反应,将乙酰乙酸乙酯的光敏基团嵌入到仲丁醇铝中,配制得具有光固化特性的含铝源打印溶液;
32.(2)按照硼、铝摩尔比为6:9的比例称取氮化硼粉体3g,并加入到含铝源打印溶液中混合均匀,再加入2g的分散剂kos190、1g的光引发剂tpo-l、8g的双三羟甲基丙烷四丙烯酸酯,球磨混合均匀得到硼酸铝光固化打印浆料;
33.(3)将硼酸铝光固化打印浆料倒入到dlp光固化打印机中,在分层厚度为50μm,紫外光强为4mw/cm2,每层曝光时间为7s的打印参数下进行打印固化,得到打印坯体;
34.(4)将打印坯体放入箱式炉中进行高温煅烧,煅烧温度为1300℃,升温速率为2℃/min,保温时间为1h,最终获得具有复杂形状和孔结构的硼酸铝多孔陶瓷。
35.实施例1制备的硼酸铝多孔陶瓷的超景深显微镜照片如图1所示,实施例1制备出的硼酸铝多孔陶瓷的扫描电镜图如图2所示。
36.实施例2
37.一种光固化3d打印工艺制备硼酸铝多孔陶瓷的方法,包括下述步骤:
38.(1)按照质量比为40:60的比例称取仲丁醇铝40g和乙酰乙酸乙酯60g,在60℃下搅拌2小时,混合均匀,从而保证仲丁醇铝与乙酰乙酸乙酯发生络合反应,将乙酰乙酸乙酯的光敏基团嵌入到仲丁醇铝中,配制得具有光固化特性的含铝源打印溶液;
39.(2)按照硼、铝摩尔比为7:9的比例称取氮化硼粉体3.1g,并加入到含铝源打印溶液中混合均匀,再加入2.5g的分散剂byk-103、1g的光引发剂tpo、9g的二缩三丙二醇二丙烯酸酯,球磨混合均匀得到硼酸铝光固化打印浆料;
40.(3)将硼酸铝光固化打印浆料倒入到dlp光固化打印机中,在分层厚度为75μm,紫外光强为7mw/cm2,每层曝光时间为10s的打印条件下进行打印固化,得到打印坯体;
41.(4)将打印坯体放入箱式炉中高温煅烧,煅烧温度为1200℃,升温速率为4℃/min,保温时间为1h,最终获得具有复杂形状和孔结构的硼酸铝多孔陶瓷。
42.实施例2制备出的硼酸铝多孔陶瓷的超景深显微镜照片如图3所示,实施例2制备出的硼酸铝多孔陶瓷的扫描电镜图如图4所示。
43.对比例1
44.一种光固化3d打印工艺制备硼酸铝多孔陶瓷的方法,制备方法同实施例1,区别仅在于步骤(1):将仲丁醇铝替换成与实施例1相同铝含量的氧化铝粉体来作为铝源,从而获得含有氧化铝粉体的光固化打印溶液。
45.实施例1、实施例2和对比例1制备出的硼酸铝光固化打印浆料的粘度曲线图如图5所示。
46.对比例2
47.一种光固化3d打印工艺制备硼酸铝多孔陶瓷的方法,制备方法同实施例1,区别仅在于步骤(1):将乙酰乙酸乙酯换成丙烯酸。
48.实施例1、实施例2和对比例2制备出的硼酸铝光固化打印浆料的光固化性能曲线
图如图6所示。
49.评价与表征
50.图1为实施例1制备的硼酸铝多孔陶瓷的超景深显微镜照片。图2为实施例1制备的硼酸铝多孔陶瓷放大8000倍的sem图。图3为实施例2中制备的硼酸铝多孔陶瓷的超景深显微镜照片。图4为实施例2制备的硼酸铝多孔陶瓷放大8000倍的sem图。可以看出采用本技术提出的光固化打印工艺可以十分简单的制备出具有复杂形状和孔结构的硼酸铝多孔陶瓷,并且硼酸铝多孔陶瓷的每个孔壁都是由硼酸铝晶须搭接而成的。这种具有复杂形状和孔结构的硼酸铝多孔陶瓷是其它多孔陶瓷成型方法无法实现的。
51.图5为实施例1、实施例2和对比例1制备的硼酸铝光固化打印浆料的粘度曲线图。对于光固化打印工艺,所用浆料必须具有一定的流动性。大量研究表明,所用浆料粘度必须小于3pa

s才能保证打印过程顺利进行。从图5可以看出,对于实例1和实例2,由于引入的铝源为液体铝源,其不会增加最终硼酸铝光固化打印浆料的粘度,所以制备出的硼酸铝光固化打印浆料具有极低的粘度,满足打印要求。而对于对比例1,其所用的铝源为氧化铝粉体,制备出的硼酸铝光固化打印浆料的粘度要远高于3pa

s,从而导致对比例1制备出的硼酸铝光固化打印浆料粘度过大,无法打印。
52.图6为实施例1、实施例2和对比例2制备的硼酸铝光固化打印浆料的光固化性能曲线图。只有具有良好的光固化特性,光固化浆料才能在打印过程中能完全固化,形成具有一定强度的坯体。从图6可以看出,实施例1和实施例2制备的硼酸铝光固化打印浆料具有良好的光固化特性。这是因为所选用的光敏改性剂乙酰乙酸乙酯可与仲丁醇铝所带的羟基发生络合反应,从而将乙酰乙酸乙酯光敏基团嵌入到仲丁醇铝中。在打印固化阶段,液态的仲丁醇铝可以一同固化成大分子网络结构。而对于对比例2,所选用的光敏改性剂为丙烯酸,其不能与仲丁醇铝发生反应。在打印固化阶段,丙烯酸发生了固化反应,但仲丁醇铝无法固化,整体硼酸铝光固化打印浆料的光固化性能较差,无法满足打印要求。
53.以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。
当前第1页1  
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
网站地图