1.本发明涉及熔融晶粒,特别是用于作为磨料晶粒施用。本发明还涉及所述晶粒的混合物,并且还涉及包含根据本发明的晶粒混合物的研磨工具。
背景技术:
2.研磨工具通常根据形成掺入其组合物中的晶粒的方法来分类:游离磨料(用于喷涂或悬浮,没有支持物)、经涂覆的磨料(布或纸类型的支持物,其中晶粒被放置在多层上)和固结磨料(呈圆形砂轮、磨棒等形式)。在后一种情况下,用有机或玻璃状粘合剂(在这种情况下,粘合剂由基本上硅化的氧化物组成)压制磨料晶粒。这些晶粒本身必须在磨损中具有良好的磨损机械特性,并与粘合剂产生良好的机械内聚力(界面的耐久性)。
3.在磨料晶粒中,熔铸晶粒和烧结晶粒是有区别的,它们具有不同的微观结构。因此,烧结晶粒和熔铸晶粒所带来的问题以及解决这些问题所采用的技术方案通常是不同的。因此,为制造熔铸晶粒而开发的组合物不能先验地用于制造具有相同特性的烧结陶瓷晶粒,反之亦然。
4.通常用于制造砂轮或砂带的基于熔融氧化铝的晶粒根据应用类型和遇到的磨损状况结合了两个主要类别:熔融氧化铝-氧化锆晶粒和熔融氧化铝晶粒。
5.熔融氧化铝-氧化锆晶粒由us-a-3,181,939已知,其描述了含有10%至60%氧化锆的熔融氧化铝-氧化锆晶粒,余量为氧化铝和杂质。us-a-4,457,767描述了熔融氧化铝-氧化锆晶粒,其组成接近共晶组成,氧化锆的量接近40重量%,并且其可包含至多2%的氧化钇。
6.与熔融氧化铝-氧化锆晶粒相比,熔融氧化铝晶粒具有更好的功效(相对于磨损材料量的晶粒消耗)和更好的能源效率,以便在低压下使用或用于精加工应用。这种性能通常可以用其特定的微观结构来解释,这种微观结构导致断裂并从而在比熔融氧化铝-氧化锆晶粒更低的应力下维持切削刃的数量。此外,熔融氧化铝晶粒比熔融氧化铝-氧化锆晶粒便宜。因此,在某些应用中,氧化铝晶粒对于成本和性能之间的折衷被认为更好,特别是对于低材料去除率,特别是对于精加工操作。
7.然而,仍然需要改进氧化铝晶粒的性能,并且特别是功效和能量效率。
8.本发明的一个目的是至少部分地解决这一需要。
技术实现要素:
9.根据本发明,该目的通过具有以下化学分析的熔融晶粒来实现,以基于氧化物的重量百分比计:
10.zro2 hfo2:2%至13%;
11.除了zro2、hfo2、y2o3和al2o3之外的元素:≤2%。
12.y2o3 al2o3:余量至100%;
13.其中0.1300≥y2o3/(zro2 hfo2)≥0.0065。
14.如在说明书的其余部分中将更详细地看到的,本发明人已经发现,通过上述化学组成,特别是通过根据本发明的zro2 hfo2的含量和y2o3/(zro2 hfo2)重量比的组合,本发明的功效和能量效率均优于已知的熔融氧化铝晶粒的功效和能量效率。不受该理论的限制,通过微观结构解释了该结果,出人意料地,尽管存在zro2 hfo2和y2o3,但该微观结构与纯氧化铝的熔融晶粒的微观结构基本相同。
15.根据本发明的熔融晶粒还可以具有以下任选特征中的一者或多者:
[0016]-3%《zro2 hfo2《11%,优选4%《zro2 hfo2《10%,优选5%《zro2 hfo2《9%;
[0017]-0.0100《y2o3/(zro2 hfo2)《0.1000,优选0.0150《y2o3/(zro2 hfo2)《0.0600,优选0.0170《y2o3/(zro2 hfo2)《0.0300;
[0018]-以基于氧化锆晶相总重量的重量百分比计,四方氧化锆和立方氧化锆的总含量大于30%且小于95%,优选大于40%且小于80%,优选大于50%且小于70%;
[0019]-碳含量大于50ppm且小于0.15%,优选大于50ppm且小于0.06%,优选大于50ppm且小于0.03%,以基于熔融晶粒重量的重量百分比计;
[0020]-熔融晶粒包含立方氧化锆;
[0021]-除了zro2、hfo2、y2o3和al2o3之外的元素含量小于1.0%;优选地,除了zro2、hfo2、y2o3和al2o3之外的元素是杂质;
[0022]-na2o《0.3%,和/或sio2《0.3%,和/或tio2《0.2%,和/或fe2o3《0.3%,和/或mgo《0.2%,和/或cao《0.2%。
[0023]
本发明还涉及一种晶粒混合物,其包含以重量百分比计大于80%的根据本发明的熔融晶粒。
[0024]
本发明还涉及一种用于制造根据本发明的熔融晶粒的混合物的方法,所述方法包括以下依次步骤:
[0025]
a)混合原材料以形成进料,
[0026]
b)熔融所述进料直至获得熔融材料,
[0027]
c)固化所述熔融材料,使得熔融材料在小于3分钟内完全固化,
[0028]
d)任选地,并且特别是如果步骤c)没有导致获得晶粒,则研磨所述固体物质以获得晶粒混合物,
[0029]
e)任选地,粒度选择。
[0030]
根据本发明,在步骤a)中选择原材料,使得在步骤c)结束时获得的固体物质具有与根据本发明的晶粒的组成一致的组成。
[0031]
本发明最后涉及一种研磨工具,其包括由粘合剂结合并粘合的晶粒(例如以砂轮的形式),或沉积在支撑物(例如带或盘)上,值得注意的是该工具的至少一部分、优选大于50%、优选大于70%、优选大于80%、优选大于90%、优选大于95%、优选大于99%、优选全部的所述晶粒是根据本发明的。具体地,研磨工具可以是修整砂轮、精密砂轮、锐化砂轮、切断砂轮、用于从本体机械加工的砂轮、修整或粗加工砂轮、调节砂轮、便携式砂轮、铸造砂轮、钻头砂轮、安装式砂轮、圆柱砂轮、圆锥砂轮、盘式砂轮或分段砂轮或任何其他类型的砂轮。
[0032]
一般而言,本发明涉及根据本发明的晶粒的用途,特别是在根据本发明的研磨工具中用于研磨的用途。
[0033]
根据本发明的晶粒特别推荐用于钢、特别是不锈钢的机械加工。
[0034]
定义
[0035]
根据本发明的晶粒的氧化物含量涉及每种相应化学元素的总含量,根据行业标准惯例,以最稳定氧化物的形式表示;因此包括低价氧化物和任选的氮化物、氮氧化物、碳化物、碳氧化物、碳氮化物或甚至上述元素的金属物质。
[0036]
在本技术的上下文中,hfo2被认为与zro2在化学上不可分离。因此,在包含氧化锆的产物的化学组合物中,“zro
2”或“zro2 hfo
2”表示这两种氧化物的总含量。根据本发明,hfo2不是有意添加到进料中的。因此,hfo2仅表示痕量的氧化铪,这种氧化物总是天然存在于氧化锆源中,含量通常小于2%。
[0037]
对于实施例,如下所述,四方氧化锆和立方氧化锆的含量通过对通过研磨熔融晶粒获得的粉末进行x射线衍射来测量。
[0038]
术语“杂质”意指必须随原材料引入的不可避免的成分。特别地,属于氧化物、氮化物、氮氧化物、碳化物、碳氧化物、碳氮化物以及钠和其他碱金属、铁和钒的金属物质的组的化合物是杂质。作为实例,可提及fe2o3或na2o。hfo2不被认为是杂质。
[0039]
氧化物的“前体”应理解为意指能够在根据本发明的晶粒或晶粒混合物的制造过程中提供所述氧化物的成分。
[0040]“晶粒”是所有尺寸均小于20mm的颗粒。
[0041]“熔融晶粒”或更广泛的“熔融产物”应理解为意指通过熔融材料的冷却而固化所获得的固体晶粒(或产物)。
[0042]“熔融材料”是通过加热进料而变成液态的物质,可以含有一些固体颗粒,但是其量不足以使所述物质具有结构。为了保持其形状,熔融材料必须容纳在容器内。根据本发明的基于氧化物的熔融产物通常通过在高于1900℃下熔融而获得。
[0043]
粉末的“中值尺寸”是指将颗粒分成重量相等的第一群体和第二群体的尺寸,这些第一群体和第二群体仅包含尺寸大于或等于或分别小于中值尺寸的颗粒。粉末的中值尺寸可以使用利用激光粒度仪产生的粒度分布来确定。
[0044]
在本说明书中,除非另有提及,否则晶粒的所有组成均以基于晶粒氧化物总重量的重量百分比给出。
具体实施方式
[0045]
下面的描述是为了说明的目的而提供的,并不限制本发明。
[0046]
熔融晶粒
[0047]
根据本发明的熔融晶粒的化学组合物、优选地根据本发明的晶粒混合物的化学组合物优选具有以下任选特征中的一者或多者:
[0048]-zro2 hfo2的含量优选大于3%,优选大于4%,优选大于5%,并且优选小于12%,优选小于11%,优选小于10%,优选小于9%,以基于氧化物的重量百分比计。本发明人发现,zro2 hfo2含量大于15%的晶粒具有与根据本发明的晶粒不同的微观结构:位于氧化铝晶粒之间的共晶相的量更大,并且这有助于改变晶粒在其使用过程中的破裂状态。优选的zro2 hfo2范围对应于晶粒的成本和性能之间的最佳折衷;
[0049]-hfo2含量优选小于1%、优选小于0.5%、优选小于0.3%、优选小于0.2%,和/或
大于0.02%,以基于氧化物的重量百分比计;
[0050]-y2o3/(zro2 hfo2)重量比优选大于0.0070、优选大于0.0080、优选大于0.0090、优选大于0.0100、优选大于0.0110、优选大于0.0120、优选大于0.0150、优选大于0.0170、优选大于0.0180、优选大于0.0190,并且优选小于0.1200、优选小于0.1000、优选小于0.0800、或小于0.0600、或小于0.0500、或小于0.0400、或小于0.0300、或小于0.0250;
[0051]-除了zro2、hfo2、y2o3和al2o3之外的元素的含量优选小于1.8%、优选小于1.5%、优选小于1.2%、优选小于1%、优选小于0.8%、优选小于0.5%,以基于氧化物的重量百分比计;
[0052]-除了zro2、hfo2、y2o3和al2o3之外的元素优选是杂质;
[0053]-na2o含量优选小于0.3%、优选小于0.2%、优选小于0.15%、优选小于0.1%、优选小于0.08%、优选小于0.05%,以基于氧化物的重量百分比计;
[0054]-sio2含量优选小于0.3%、优选小于0.2%、优选小于0.15%、优选小于0.1%、优选小于0.08%、优选小于0.05%,以基于氧化物的重量百分比计;
[0055]-tio2含量优选小于0.2%、优选小于0.15%、优选小于0.13%、优选小于或等于0.12%,以基于氧化物的重量百分比计;
[0056]-fe2o3含量优选小于0.3%、优选小于0.2%、优选小于0.15%、优选小于0.1%、优选小于0.08%、优选小于0.05%,以基于氧化物的重量百分比计;
[0057]-mgo含量优选小于0.2%、优选小于0.15%、优选小于0.1%、优选小于0.08%,和/或大于0.05%,以基于氧化物的重量百分比计;
[0058]-cao含量优选小于0.2%、优选小于0.15%、优选小于0.1%、优选小于0.08%,和/或大于0.05%,以基于氧化物的重量百分比计;
[0059]-氧化物的含量大于98%、优选大于99%、优选大于99.4%、优选大于99.5%、优选大于99.6%、优选大于99.7%,以基于熔融晶粒的重量百分比计;
[0060]-碳含量大于30ppm、优选大于50ppm、优选大于80ppm和/或优选小于0.15%、优选小于0.1%、优选小于0.08%、优选小于0.06%、优选小于0.05%、优选小于0.04%、优选小于0.03%,以基于熔融晶粒的重量百分比计。
[0061]
根据本发明的熔融晶粒的晶相优选具有以下任选特征中的一者或多者:
[0062]-以基于氧化锆晶相总重量的重量百分比计,四方氧化锆和立方氧化锆的总含量优选大于30%、优选大于40%、优选大于50%、优选大于55%、优选大于60%,和/或优选小于95%、优选小于90%、优选小于85%、优选小于80%、优选小于75%、优选小于70%;
[0063]-氧化锆至少部分呈立方体形式。
[0064]
虽然无法从理论上解释,但发明人已发现这些晶体学特性是有利的。
[0065]
根据本发明的熔融晶粒具有基本上由氧化铝晶体组成的微观结构,所述晶体被zro2和y2o3所在的边界分开。优选地,除了al2o3、zro2和y2o3之外的元素基本上全部位于所述边界内。
[0066]
优选地,氧化铝晶体的平均尺寸小于50μm、优选小于40μm、优选小于30μm、优选小于25μm、或小于20μm,和/或优选大于3μm、优选大于4μm。
[0067]
为了减小根据本发明的熔融晶粒的氧化铝晶体的平均尺寸,在根据本发明的方法的步骤c)中,可以减少完全固化熔融材料所需的时间。
[0068]
晶粒混合物
[0069]
以重量百分比计,根据本发明的晶粒混合物包含优选大于85%,优选大于90%,优选大于95%,优选大于99%,优选基本上100%的根据本发明的熔融晶粒。
[0070]
优选地,根据本发明的晶粒混合物符合根据fepa标准43-gb-1984、r1993和fepa标准42-gb-1984、r1993所提供的混合物或粗粒的粒度分布。
[0071]
优选地,根据本发明的晶粒混合物在16mm筛子上、优选在9.51mm筛子上使用摇筛机测量的筛上料重量小于1%。
[0072]
用于制造根据本发明的熔融晶粒的方法
[0073]
根据本发明的熔融晶粒可以根据以上提及的步骤a)至e)制造,这些步骤对于熔融氧化铝晶粒的制造来说是常规的。例如,参数可以采用用于以下实例的方法的值。
[0074]
在步骤a)中,按照常规计量出原材料以获得所想要的组合物,然后混合以形成进料。
[0075]
进料中的金属zr、hf、al和y基本上全部存在于熔融晶粒中。
[0076]
选择进料的原材料使得在步骤c)结束时获得的固体物质具有与根据本发明的晶粒的组成一致的组成,因此对于本领域技术人员来说不存在任何困难。
[0077]
金属zr、hf、al和y优选以氧化物zro2、hfo2、al2o3和y2o3的形式引入进料中。它们也可以常规地以这些氧化物的前体的形式引入。
[0078]
在一个实施方式中,进料包含的碳(优选以焦炭的形式)的量为0.2%至4%,基于进料的重量。
[0079]
在一个实施方式中,特别是当进料中存在的原材料具有低的杂质含量时,进料由氧化物zro2、hfo2、al2o3和y2o3和/或这些氧化物的前体组成。
[0080]
认为晶粒中“其他元素”的含量小于2%不会抑制本发明的有利技术效果。
[0081]“其他元素”优选为杂质。
[0082]
在步骤b)中,优选使用电弧炉,优选具有石墨电极的h
é
roult型,但是可以设想任何已知的炉,例如感应炉或等离子炉,只要它们能够熔融进料。
[0083]
原材料优选在还原介质(通过进料中碳的存在和/或通过将电极浸没在熔融材料浴中的事实获得)中熔融,优选在大气压下熔融。
[0084]
优选地,使用电弧炉,其包括容量为70升的容器,在浇注之前熔融能量为大于1.9kwh/原材料kg,功率大于209kw,或者同等条件下使用不同容量的电弧炉。本领域技术人员知道如何确定此类等效条件。
[0085]
在步骤c)中,冷却必须快速,也就是说,使得熔融材料在小于3分钟内完全固化。例如,它可以由浇注到模具中产生,如us 3 993 119中所述,或者由猝灭产生。
[0086]
优选地,熔融材料在小于2分钟、优选小于1分钟、优选小于40秒、优选小于30秒内完全固化。
[0087]
如果步骤c)不能直接获得晶粒混合物,或者如果这些晶粒不具有适用于目标应用的粒度,则可以根据常规技术进行研磨(步骤d))。
[0088]
在步骤e)中,如果前面的步骤不能获得具有适合目标应用的粒度的晶粒混合物,则可以进行粒度选择,例如通过筛选或旋风分离。
[0089]
研磨工具
[0090]
用于制造根据本发明的研磨工具的方法是众所周知的。
[0091]
研磨工具可以特别通过借助于粘合剂(特别是砂轮的形式)、例如通过压制来附聚根据本发明的晶粒而形成,或者通过借助粘合剂将根据本发明的晶粒附接至支持物(例如带或盘)而形成。
[0092]
粘合剂可以是无机的、特别是玻璃(例如,可以使用由氧化物组成、基本上由一种或多种硅酸盐组成的粘合剂)或有机的。
[0093]
有机粘合剂非常合适。粘合剂特别可以是热固性树脂。它优选选自由以下组成的组:酚醛树脂、环氧树脂、丙烯酸酯、聚酯、聚酰胺、聚苯并咪唑、聚氨酯、苯氧基树脂、苯酚-糠醛、苯胺-甲醛、脲-甲醛、甲酚-醛、间苯二酚-醛、脲-醛或三聚氰胺-甲醛树脂及其混合物。
[0094]
粘合剂还可掺入有机或无机填充剂,例如水合无机填充剂(例如三水合铝或勃姆石)或非水合无机填充剂(例如氧化钼)、冰晶石、卤素、萤石、硫化铁、硫化锌、氧化镁、碳化硅、氯化硅、氯化钾、二氯化锰、氟硼酸钾或锌、氟铝酸钾、氧化钙、硫酸钾、偏二氯乙烯和氯乙烯的共聚物、聚偏二氯乙烯、聚氯乙烯、纤维、硫化物、氯化物、硫酸盐、氟化物及其混合物。粘合剂还可以含有增强纤维,例如玻璃纤维。
[0095]
优选地,粘合剂占混合物体积的2%至60%,优选20%至40%。
[0096]
实施例
[0097]
出于说明本发明的目的给出以下非限制性实施例。
[0098]
测量方案
[0099]
以下测量方案用于确定熔融晶粒混合物的某些特性。它们允许很好地模拟晶粒用于研磨时的真实行为。
[0100]
为了评价晶粒混合物的研磨性能,制备了直径为12.7cm、每个实施例含有1克晶粒的砂轮。
[0101]
随后用这些砂轮对尺寸为20.5cm x 7.6cm x 6.0cm的304不锈钢制成的板在表面处进行机械加工,以恒定速度来回移动,同时保持恒定的切割深度40μm,并且砂轮转速为3600rpm。记录机械加工过程中砂轮产生的总能量e
tot
。
[0102]
砂轮完全磨损后,测量已机械加工钢材的重量(即研磨操作去除的钢材重量)“m
a”,和消耗的砂轮重量“m
m”,以及通过研磨操作去除的钢的体积“v
a”。
[0103]
为了评价功效,按照惯例计算所机械加工的钢的重量除以在所述机械加工期间消耗的晶粒的重量的比率s(s=ma/mm)。
[0104]
为了评价能源效率,常规计算机械加工的比能es,其等于去除单位体积钢材所需的能量(es=e
tot
/va)。
[0105]
四方氧化锆和立方氧化锆(称为“稳定氧化锆”)的总量,以基于氧化锆晶相总重量的重量百分比计,通过对于由retsch出售的rs100研磨机中干磨的样品进行x射线衍射来测定,其配备有内径等于80mm并且内部高度等于40mm的碳化钨碗和直径等于45mm并且高度等于35mm的碳化钨卵石。
[0106]
20g的尺寸为425μm至500μm的根据本发明的晶粒首先在步骤e)中通过筛选来选择。然后将这些晶粒在研磨机中研磨30秒,所选速度等于14 000rpm。研磨后,回收的粉末通过40μm筛子进行筛选,并将仅将筛下料用于x-射线衍射测量。
[0107]
衍射图是使用bruker的d8 endeavor设备获取的,其2θ角度范围为5
°
至100
°
,步长为0.01
°
,并且计数时间为0.34s/步。前透镜具有0.3
°
主狭缝和2.5
°
索勒狭缝。使用自动刀,样品以等于15rpm的速度绕自身旋转。后透镜具有2.5
°
索勒狭缝、0.0125mm镍滤光片和孔径等于4
°
的1d检测器。
[0108]
随后使用eva软件和icdd2016数据库对衍射图案进行定性分析。
[0109]
假定为单一(四方或立方)稳定相。
[0110]
一旦检测到存在的相,使用malvern panalytical公司的highscore plus软件,使用“伪voigt裂缝宽度”函数以及单斜氧化锆相的(-111)和(111)平面的面积及稳定氧化锆相的(111)平面的峰面积来分析衍射图。
[0111]
即:
[0112]am(-111)
:单斜氧化锆相的(-111)平面的峰面积,其位于2θ=28.2
°
附近,
[0113]am(111)
:单斜氧化锆相的(111)平面的峰面积,其位于2θ=31.3
°
附近,
[0114]as(111)
:稳定氧化锆相(以四方和/或立方形式)的(111)平面的峰面积,其位于2θ=30.2
°
附近,
[0115]dm
:单斜氧化锆的密度,取等于5.8g/cm3,
[0116]ds
:稳定氧化锆的密度,取等于6.1g/cm3。
[0117]
四方氧化锆和立方氧化锆的以重量计的量(以基于氧化锆晶相总重量的百分比)等于:
[0118][0119]
除碳含量外,熔融晶粒的化学分析通过电感耦合等离子体(icp)技术对y2o3和含量不超过0.5%的元素进行测量。为了确定其他元素的含量,通过熔融产物来制造待分析的产物的珠粒,然后通过x-射线荧光进行化学分析。
[0120]
使用由leco出售的cs744型碳-硫分析仪测量熔融晶粒的碳含量。
[0121]
粉末的中值尺寸通常使用由horiba出售的la950v2型激光粒度仪来测量。
[0122]
实施例的熔融晶粒的氧化铝晶体的平均尺寸通过“平均线性截距”方法测量。标准astm e1382中描述了这种类型的方法。根据该标准,在熔融晶粒的图像上绘制分析线,然后沿着每条分析线,测量分隔与所述分析线相交的两个连续晶体的两个边界之间的长度l,称为“截距”。
[0123]
随后确定截距“l”的平均长度“l'”。
[0124]
对于实施例的晶粒混合物,在尺寸为500μm至600μm的熔融晶粒通过扫描电子显微术获得图像上测量截距,所述段先前已被抛光直至获得镜面品质。选择用于拍摄图像的放大倍数,以便在一张图像上看到未被图像边缘切割的130至160个氧化铝晶体。每个晶粒混合物产生5个图像,每个图像都在不同的晶粒上。每个图像至少测量100个截距。
[0125]
熔融晶粒混合物的氧化铝晶体的平均尺寸“d”等于在所有5个图像上测量的截距l的平均值l'。
[0126]
制造方案
[0127]
实施例的产物由以下原材料制备:
[0128]-纯度大于99.6重量%的氧化铝粉末,包含杂质na2o、cao、fe2o3、mgo、tio2、sio2且
中值尺寸等于80μm;
[0129]-纯度大于99.4重量%的氧化锆粉末,包含杂质al2o3、cao、y2o3、mgo、tio2、sio2,且中值尺寸等于1.5μm;
[0130]-纯度大于99.999重量%、中值粒径为3至6μm的氧化钇粉末。
[0131]
根据本发明,晶粒是根据以下常规制造方法制备的:
[0132]
a)混合原材料以形成进料,
[0133]
b)在包括石墨电极的h
é
roult型单相电弧炉中熔融所述进料,炉容器直径为0.8m,电压为95v,电流为2200a,并且负荷时供给的比电能为1.9kwh/kg,
[0134]
c)通过用于在薄金属板之间铸造的设备(例如专利us-a-3 993 119中提出的设备)突然冷却熔融材料,以获得构成固体物质的完全固体片材,
[0135]
d)研磨步骤c)中冷却的所述固体物质,以获得晶粒混合物,
[0136]
e)通过使用摇筛机筛选,选择尺寸为500至600μm的晶粒。
[0137]
下表1提供了各种熔融晶粒混合物的化学组成和立方氧化锆比例,以及利用这些混合物获得的结果。
[0138]
s比率的改善百分比通过下式计算:100.(所考虑的实施例的产物的比率s
–
参考实施例1的产物的比率s)/参考实施例1的产物的比率。
[0139]
比率s的百分比提高的高正值是期望的。发明人认为比率s的提高大于5%是显著的。
[0140]
优选地,比率s提高大于10%,优选大于15%,优选大于20%,优选大于25%,优选大于30%,优选大于35%。
[0141]
比能es减少百分比通过以下公式计算:
[0142]
100.(参考实施例1的产物的es
–
所考虑实施例的产物的es)/参考实施例1的产物的es。
[0143]
测试期间比能es的百分比降低的高正值是期望的。发明人认为比能es减少大于5%是显著的。优选地,比能降低了大于10%,优选大于15%。
[0144]
四方氧化锆和立方氧化锆的量以基于氧化锆晶相总重量的重量百分比提供。
[0145]
本发明之外的参考实施例1是由saint-gobain ceramic materials以名称ma88k-weak出售的熔融晶粒的混合物。
[0146]
[表1]
[0147][0148]
n.d.:未测定
[0149]
对于实施例2至8的晶粒,氧化铝晶体的平均尺寸为5μm至25μm。
[0150]
发明人发现,小于2%的zro2含量不能改善研磨性能。
[0151]
发明人还发现,大于13%的zro2含量导致熔融晶粒的微观结构改变,所述微观结构从主要由刚玉晶粒组成并在晶界处具有氧化锆的微观结构转变为包含相当量的氧化铝-氧化锆共晶相的微观结构。
[0152]
对比实施例1和实施例2的比较显示了y2o3/(zro2 hfo2)重量比的重要性:对于等于0.0065的这种比率,比率s提高了20%并且比能降低了5%。
[0153]
对比实施例1和本发明之外的实施例8的比较表明,y2o3/(zro2 hfo2)重量比等于0.14,该比率提高17%,但导致比能增加了7%。
[0154]
对比实施例1和实施例3、4、5、6和7的比较显示了y2o3/(zro2 hfo2)重量比的重要性,分别等于0.0125、0.0209、0.0232、0.0248和0.0433:比率s分别提高了25%、42%、41%、31%和24%,并且比能分别降低了8%、16%、18%、14%和9%。
[0155]
实施例4和5是其中优选的实施例。
[0156]
现在清楚的是,本发明提供了主要包含氧化铝的熔融晶粒的混合物,因此比熔融氧化铝-氧化锆晶粒具有更低的成本,并且比已知的氧化铝晶粒具有更好的功效和能量效率。
[0157]
当然,本发明不限于所描述的实施方式,这些实施方式以说明性和非限制性示例的方式提供。
[0158]
特别地,根据本发明的熔融晶粒不限于特定的形状或尺寸。