fsu设备工作状态的ai智能检测方法与流程-j9九游会真人

文档序号:35695157发布日期:2023-10-11 18:06阅读:4来源:国知局

fsu设备工作状态的ai智能检测方法
技术领域
1.本技术涉及图像处理技术领域,尤其涉及一种fsu设备工作状态的ai智能检测方法。


背景技术:

2.fsu(field supervision unit,端站数据采集器)设备作为单个的数据管理单元存在,用于采集智能设备数据或本板传感器数据,并上传所采集的数据到服务器平台,fsu还可以对所接设备的状态进行监控,以便随时了解设备的运行状态。
3.目前fsu设备工作状态质检方法主要采用人工质检或者单纯的目标检测质检方法。其中,人工质检由一线施工人员拍照上传系统,然后由质检人员人工打开上传的fsu设备照片,对fsu工作状态进行核查,而且人工质检是事后质检,当遇到不合格的情况,需要施工人员二次回到现场进行整改,效率低下,此外人工质检存在质检不透明、不规范的情况,监管较难。而单纯的目标检测质检方法主要是采集fsu设备的相关图片,简单的训练直接识别检测目标,但是由于现场环境复杂,存在诸多干扰因素,识别准确率低,不能保障质检质量。
4.综上,如何提高对fsu设备工作状态识别的效率和准确率,俨然已成为本领域亟需解决的技术问题。


技术实现要素:

5.本技术的主要目的在于提供一种fsu设备工作状态的ai(artificial intelligence人工智能)智能检测方法,旨在提高对fsu设备工作状态识别的效率和准确率。
6.为实现上述目的,本技术提供一种fsu设备工作状态的ai智能检测方法,所述fsu设备工作状态的ai智能检测方法包括:
7.基于预设的目标识别模型识别采集图像中的指示灯位置,并截取所述指示灯位置所在的区域图像作为指示灯图像;
8.将所述指示灯图像转换为hsv(hue saturation value一种图像格式)指示灯图像,并基于预设的颜色阈值范围针对所述hsv指示灯图像进行颜色提取,以得到目标指示灯图像;
9.针对所述目标指示灯图像进行轮廓提取以得到目标指示灯轮廓图像,并根据所述目标指示灯轮廓图像中轮廓的面积确定与所述采集图像对应的fsu设备的工作状态。
10.可选地,所述根据所述目标指示灯轮廓图像中轮廓的面积确定与所述采集图像对应的fsu设备的工作状态的步骤,包括:
11.过滤所述目标指示灯轮廓图像中面积小于预设的第一面积阈值的轮廓以得到目标轮廓;
12.判断所述目标轮廓的面积是否超过预设的第二面积阈值,其中,所述第二面积阈
值大于或等于所述第一面积阈值;
13.若所述目标轮廓的面积超过所述第二面积阈值时,则确定与所述采集图像对应的fsu设备的工作状态为正常状态。
14.可选地,在所述基于预设的目标识别模型识别采集图像中的指示灯位置的步骤之前,所述方法还包括:
15.将训练数据输入至基于yolo(you only look once一种目标检测算法)目标检测算法的初始目标识别模型中进行训练,以得到包括权重参数文件和目标检测框的目标识别模型,其中,所述训练数据为已使用检测框标注指示灯位置的fsu设备图像。
16.可选地,所述基于预设的目标识别模型识别采集图像中的指示灯位置的步骤,包括:
17.将采集图像输入至所述目标识别模型;
18.根据所述权重参数文件识别所述采集图像中的指示灯位置,并通过所述目标检测框标注所述指示灯位置。
19.可选地,所述基于预设的颜色阈值范围针对所述hsv指示灯图像进行颜色提取,以得到目标指示灯图像的步骤,包括:
20.遍历所述hsv指示灯图像中的像素点,并判断所述像素点的颜色是否属于预设的颜色阈值范围;
21.若所述像素点的颜色属于所述颜色阈值范围,则提取所述像素点;
22.根据提取的各所述像素点生成目标指示灯图像。
23.可选地,所述针对所述目标指示灯图像进行轮廓提取以得到目标指示灯轮廓图像的步骤,包括:
24.基于canny边缘检测算法识别所述目标指示灯图像中的轮廓边缘;
25.根据所述轮廓边缘对所述目标指示灯图像进行轮廓提取以得到目标指示灯轮廓图像。
26.可选地,在所述根据所述目标指示灯轮廓图像中轮廓的面积确定与所述采集图像对应的fsu设备的工作状态的步骤之后,所述方法还包括:
27.若所述工作状态为正常状态,则输出正常提示信息;
28.若所述工作状态为非正常状态,则输出非正常提示信息和调试建议。
29.本技术实施例提出的一种fsu设备工作状态的ai智能检测方法,该fsu设备工作状态的ai智能检测方法包括:基于预设的目标识别模型识别采集图像中的指示灯位置,并截取所述指示灯位置所在的区域图像作为指示灯图像;将所述指示灯图像转换为hsv指示灯图像,并基于预设的颜色阈值范围针对所述hsv指示灯图像进行颜色提取,以得到目标指示灯图像;针对所述目标指示灯图像进行轮廓提取以得到目标指示灯轮廓图像,并根据所述目标指示灯轮廓图像中轮廓的面积确定与所述采集图像对应的fsu设备的工作状态。
30.相比于传统的fsu设备工作状态的ai智能检测方法,本技术通过预设的目标识别模型识别采集图像中的指示灯位置,并截取指示灯位置所在的区域图像,将该区域图像作为指示灯图像;然后,将指示灯图像转换为hsv指示灯图像,并基于预设的颜色阈值范围在hsv指示灯图像中提取对应的颜色,将根据颜色阈值范围提取的颜色作为目标指示灯图像;最后,针对目标指示灯图像进行轮廓提取以得到目标指示灯轮廓图像,并根据目标指示灯
轮廓图像中一个或多个轮廓的面积确定与采集图像对应的fsu设备的工作状态。
31.如此,本技术通过预设的目标识别模型识别采集图像的指示灯位置,然后对识别区域进行hsv颜色提取,并采用边缘检测技术确定fsu设备的工作状态,从而极大地提高了对fsu设备工作状态识别的效率和准确率。
附图说明
32.图1为本技术fsu设备工作状态的ai智能检测方法第一实施例的流程示意图;
33.图2为本技术fsu设备工作状态的ai智能检测方法第二实施例涉及的流程示意图。
34.本技术目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
35.应当理解,此处所描述的具体实施例仅仅用以解释本技术,并不用于限定本技术。
36.下面将结合本技术实施例中的附图,对本技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本技术的一部分实施例,而不是全部的实施例。基于本技术中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本技术保护的范围。
37.需要说明,本技术实施例中所有方向性指示(诸如上、下、左、右、前、后
……
)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
38.在本技术中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本技术中的具体含义。
39.另外,在本技术中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本技术要求的保护范围之内。
40.本技术实施例提出本技术fsu设备工作状态的ai智能检测方法的各个实施例的整体构思。
41.在本技术实施例中,fsu设备作为单个的数据管理单元存在,用于采集智能设备数据或本板传感器数据,并上传所采集的数据到服务器平台,fsu还可以对所接设备的状态进行监控,以便随时了解设备的运行状态。
42.目前fsu设备工作状态质检方法主要采用人工质检或者单纯的目标检测质检方法。其中,人工质检由一线施工人员拍照上传系统,然后由质检人员人工打开上传的fsu设备照片,对fsu工作状态进行核查,而且人工质检是事后质检,当遇到不合格的情况,需要施工人员二次回到现场进行整改,效率低下,此外人工质检存在质检不透明、不规范的情况,
监管较难。而单纯的目标检测质检方法主要是采集fsu设备的相关图片,简单的训练直接识别检测目标,但是由于现场环境复杂,存在诸多干扰因素,识别准确率低,不能保障质检质量。
43.综上,如何提高对fsu设备工作状态识别的效率和准确率,俨然已成为本领域亟需解决的技术问题。
44.针对上述问题,本技术实施例提出一种fsu设备工作状态的ai智能检测方法,该方法包括:基于预设的目标识别模型识别采集图像中的指示灯位置,并截取所述指示灯位置所在的区域图像作为指示灯图像;将所述指示灯图像转换为hsv指示灯图像,并基于预设的颜色阈值范围针对所述hsv指示灯图像进行颜色提取,以得到目标指示灯图像;针对所述目标指示灯图像进行轮廓提取以得到目标指示灯轮廓图像,并根据所述目标指示灯轮廓图像中轮廓的面积确定与所述采集图像对应的fsu设备的工作状态。
45.相比于传统的fsu设备工作状态的ai智能检测方法,本技术通过预设的目标识别模型识别采集图像中的指示灯位置,并截取指示灯位置所在的区域图像,将该区域图像作为指示灯图像;然后,将指示灯图像转换为hsv指示灯图像,并基于预设的颜色阈值范围在hsv指示灯图像中提取对应的颜色,将根据颜色阈值范围提取的颜色作为目标指示灯图像;最后,针对目标指示灯图像进行轮廓提取以得到目标指示灯轮廓图像,并根据目标指示灯轮廓图像中一个或多个轮廓的面积确定与采集图像对应的fsu设备的工作状态。
46.如此,本技术通过预设的目标识别模型识别采集图像的指示灯位置,然后对识别区域进行hsv颜色提取,并采用边缘检测技术确定fsu设备的工作状态,从而极大地提高了对fsu设备工作状态识别的效率和准确率。
47.基于上述本技术fsu设备工作状态的ai智能检测方法的总体构思,提出本技术fsu设备工作状态的ai智能检测方法的各个实施例。
48.请参照图1,图1为本技术fsu设备工作状态的ai智能检测方法第一实施例的流程示意图。需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
49.在本实施例中,为便于理解和阐述,在本实施例中均以终端设备作为直接的执行主体以针对本技术fsu设备工作状态的ai智能检测方法进行阐述。
50.如图1所示,在本实施例中,本技术fsu设备工作状态的ai智能检测方法可以包括:
51.步骤s10:基于预设的目标识别模型识别采集图像中的指示灯位置,并截取所述指示灯位置所在的区域图像作为指示灯图像;
52.在本实施例中,终端设备通过外接采集设备采集fsu设备的图像,采集的图像中包括fsu设备的指示灯,终端设备在采集到图像后,基于预设的目标识别模型识别采集图像中的指示灯的位置,并同样基于目标识别模型截取指示灯在采集图像中的区域图像作为指示灯图像。
53.需要说明的是,在本实施例中,预设的目标识别模型为基于目标检测算法构建的预测模型,yolo算法通过将目标检测任务转换成一个回归问题,大大加快了对采集图像中指示灯位置的识别速度。
54.此外,在一种可行的实施例中,终端设备采集同一fsu设备的多张图像,目标识别模型可同时处理这多张图像,识别多张图像中各自的指示灯位置,从而提高对指示灯位置
识别的精确度。
55.步骤s20:将所述指示灯图像转换为hsv指示灯图像,并基于预设的颜色阈值范围针对所述hsv指示灯图像进行颜色提取,以得到目标指示灯图像;
56.在本实施例中,终端设备中预先设置有颜色阈值范围,终端设备将截取到的指示灯图像转换为hsv指示灯图像,然后根据颜色阈值范围对该hsv指示灯图像进行颜色提取,将提取出的颜色作为目标指示灯图像。
57.需要说明的是,在本实施例中,终端设备通过hsv模型将截取的指示灯图像转换为hsv指示灯图像,hsv模型是针对用户观感的一种颜色模型,hsv颜色空间的各通道分别表示色调(hue)、饱和度(saturation)和明度(value),可以直观地表达色彩的明暗、色调及鲜艳程度。hsv颜色空间可以用一个圆锥空间模型来描述。圆锥的顶点处v=0,h和s无定义,代表黑色;圆锥的顶面中心处v=max,s=0,h无定义,代表白色。当s=1,v=1时,h所代表的任何颜色被称为纯色;当s=0时,饱和度为0,颜色最浅,最浅被描述为灰色,灰色的亮度由v决定,此时h无意义;当v=0时,颜色最暗,最暗被描述为黑色,此时h和s均无意义,无论如何取值均为黑色。色调是色彩的基本属性,表示不同的颜色,可以用于描述和识别某种颜色。hsv模型在对指定颜色分割时非常有效,用h和s分量表示颜色距离,颜色距离指代表两种颜色之间的数值差异。
58.示例性地,在本实施例中,fsu设备的指示灯在亮起时发出的光为绿色,则终端设备要提取的颜色为绿色,则终端设备中预先设置的hsv颜色阈值范围为【35,43,46】-【77,255,255】,当hsv指示灯图像中的像素颜色在该范围内时,终端设备提取该像素点。
59.进一步地,在一种可行的实施例中,步骤s20中“基于预设的颜色阈值范围针对所述hsv指示灯图像进行颜色提取,以得到目标指示灯图像”的步骤,包括:
60.步骤s201:遍历所述hsv指示灯图像中的像素点,并判断所述像素点的颜色是否属于预设的颜色阈值范围;
61.在本实施例中,终端设备将指示灯图像转换为hsv指示灯图像之后,遍历hsv指示灯图像中的全部像素点,逐一判断各像素点的颜色是否属于预设的颜色阈值范围。通过将指示灯图像从rgb控件转换到hsv颜色空间,能够提高采集图像中颜色识别的精度和准确度。
62.步骤s202:若所述像素点的颜色属于所述颜色阈值范围,则提取所述像素点;
63.在本实施例中,终端设备判断hsv指示灯图像中各像素点的颜色是否符合颜色阈值范围,若像素点的颜色符合颜色阈值范围,则终端设备提取该像素点。
64.在另一种可行的实施例中,若像素点的颜色不符合颜色阈值范围,则终端设备过滤该像素点。
65.步骤s203:根据提取的各所述像素点生成目标指示灯图像。
66.在本实施例中,终端设备遍历完hsv指示灯图像中所有像素点后,将提取的符合颜色阈值范围的像素点整合起来作为目标指示灯图像。
67.步骤s30:针对所述目标指示灯图像进行轮廓提取以得到目标指示灯轮廓图像,并根据所述目标指示灯轮廓图像中轮廓的面积确定与所述采集图像对应的fsu设备的工作状态。
68.在本实施例中,终端设备针对目标指示灯图像进行轮廓提取,提取得到目标指示
灯轮廓图像,然后计算目标指示灯轮廓图像中轮廓的面积,根据轮廓的面积大小确定与采集图像对应的fsu设备的工作状态。
69.需要说明的是,在本实施例中,终端设备在目标指示灯图像中提取的轮廓可以是一个或多个,当图像中有提取到多个轮廓时,终端设备依次确定各个轮廓的面积。
70.进一步地,在一种可行的实施例中,步骤s30中“根据所述目标指示灯轮廓图像中轮廓的面积确定与所述采集图像对应的fsu设备的工作状态”的步骤,包括:
71.步骤s301:过滤所述目标指示灯轮廓图像中面积小于预设的第一面积阈值的轮廓以得到目标轮廓;
72.在本实施例中,终端设备中预先设置有第一面积阈值,终端设备计算目标指示灯轮廓图像中轮廓的面积,当只有一个轮廓时,终端设备计算该轮廓面积,当有多个轮廓时,终端设备逐一计算各个轮廓各自的面积,终端设备将图像中的轮廓面积大小与第一面积阈值进行比较,当轮廓面积小于第一面积阈值时,终端设备将该轮廓面积对应的轮廓过滤。
73.需要说明的是,在本实施例中,采集图像为实地采集的fsu设备的实时图像,采集图像中的fsu设备上可能有产生干扰误差的灰尘、碎片等,终端设备通过将小于第一面积阈值的轮廓进行过滤,避免出现灰尘、碎片等杂物造成的指示灯识别误差。
74.还需要说明的是,终端设备中预先设置的第一面积阈值为fsu设备的一个指示灯在点亮时的发光像素点所占的最小面积。
75.步骤s302:判断所述目标轮廓的面积是否超过预设的第二面积阈值,其中,所述第二面积阈值大于或等于所述第一面积阈值;
76.在本实施例中,终端设备将目标指示灯轮廓图像中小于第一面积阈值的轮廓过滤后,判断剩下的轮廓的面积是否超过预设的第二面积阈值,该第二面积阈值大于或等于第一面积阈值。
77.需要说明的是,在本实施例中,终端设备中预先设置的第二面积阈值为fsu设备在正常工作时指示灯位置的发光像素点所占的最小面积。
78.步骤s303:若所述目标轮廓的面积超过所述第二面积阈值时,则确定与所述采集图像对应的fsu设备的工作状态为正常状态。
79.在本实施例中,终端设备确定目标轮廓的面积超过第二面积阈值时,则确定采集图像所对应的fsu设备的工作状态为正常状态,若目标轮廓的面积未超过第二面积阈值,则确定采集图像所对应的fsu设备的工作状态为非正常状态。
80.示例性地,当fsu设备有至少一个指示灯点亮时即处于正常状态,则第二面积阈值可与第一面积阈值相等,当fsu设备需要至少三个指示灯点亮时即处于正常状态,此时终端设备将目标轮廓的面积之和与第二面积阈值进行比较,此时第二面积阈值为第一面积阈值的三倍,当目标轮廓的面积之和大于第二面积阈值时,此时fsu设备的工作状态为正常状态。
81.进一步地,在一种可行的实施例中,步骤s30中“针对所述目标指示灯图像进行轮廓提取以得到目标指示灯轮廓图像”的步骤,包括:
82.步骤s304:基于canny边缘检测算法识别所述目标指示灯图像中的轮廓边缘;
83.在本实施例中,终端设备基于canny边缘检测算法识别目标指示灯图像中的轮廓边缘,该canny边缘检测算法至少包括以下步骤:
84.步骤a:应用高斯滤波来平滑去除噪声,高斯滤波器是将高斯函数离散化,将滤波器中对应的横纵坐标索引代入到高斯函数,从而得到对应的值,二维高斯函数如下:
[0085][0086]
该二维高斯函数中(x,y)为坐标,σ为标准差。
[0087]
步骤b:计算梯度强度和方向:采用sobe l滤波器计算水平方向和垂直方向的梯度,梯度公式为:
[0088][0089]
该梯度公式中,g
x
为水平方向梯度,gy为垂直方向梯度。
[0090]
步骤c:遍历梯度矩阵上的所有点,并保留边缘方向上具有极大值的像素,该像素值的计算公式为:
[0091][0092]
其中,m
t
(x,y)为边缘(x,y)处保留下来的像素值,m(x,y)为边缘(x,y)处的像素值,t为边缘处像素的最大值。
[0093]
另外为了更好的检测边界,canny算法还可以采用双阈值的方法来决定可能的边界,利用查看弱边缘像素及其8个邻域像素来保留弱边界。
[0094]
步骤s305:根据所述轮廓边缘对所述目标指示灯图像进行轮廓提取以得到目标指示灯轮廓图像。
[0095]
在本实施例中,终端设备根据算法确定的轮廓边缘对目标指示灯图像进行轮廓提取,将提取到的轮廓作为目标指示灯轮廓图像。如此,终端设备再根据确定的目标指示灯轮廓图像中轮廓的面积,来确定fsu设备的工作状态,提高了fsu设备工作状态判断的准确性。
[0096]
进一步地,在一种可行的实施例中,在步骤s30之后,本技术fsu设备工作状态的ai智能检测方法还包括:
[0097]
步骤s40:若所述工作状态为正常状态,则输出正常提示信息;
[0098]
步骤s50:若所述工作状态为非正常状态,则输出非正常提示信息和调试建议。
[0099]
在本实施例中,终端设备判断出检测的fsu设备的工作状态之后,向质检人员输出检测结果,具体地,终端设备确定fsu设备的工作状态为正常状态时,终端设备通过用户交互界面输出正常提示信息,终端设备确定fsu设备的工作状态为非正常状态时,通过用户交互界面输出非正常提示信息和调试建议。
[0100]
在另一种可行的实施例中,终端设备也可向质检人员的用户终端输出提示信息,提示信息的具体形式可为文字、语音、表格等多种形式中的一种或者多种,以使质检人员在接收到检测结果时可及时根据检测结果对fsu设备做出相应的调整,提高质检效率。
[0101]
在本实施例中,本技术基于预设的目标识别模型识别采集图像中的指示灯位置,并截取所述指示灯位置所在的区域图像作为指示灯图像;将所述指示灯图像转换为hsv指示灯图像,并基于预设的颜色阈值范围针对所述hsv指示灯图像进行颜色提取,以得到目标指示灯图像;针对所述目标指示灯图像进行轮廓提取以得到目标指示灯轮廓图像,并根据所述目标指示灯轮廓图像中轮廓的面积确定与所述采集图像对应的fsu设备的工作状态。
[0102]
具体地,相比于传统的fsu设备工作状态的ai智能检测方法,本技术终端设备通过外接采集设备采集fsu设备的图像,采集的图像中包括fsu设备的指示灯,终端设备在采集到图像后,基于预设的目标识别模型识别采集图像中的指示灯的位置,并同样基于目标识别模型截取指示灯在采集图像中的区域图像作为指示灯图像;然后,终端设备中预先设置有颜色阈值范围,终端设备将截取到的指示灯图像转换为hsv指示灯图像,然后根据颜色阈值范围对该hsv指示灯图像进行颜色提取,将提取出的颜色作为目标指示灯图像;最后,终端设备针对目标指示灯图像进行轮廓提取,提取得到目标指示灯轮廓图像,然后计算目标指示灯轮廓图像中轮廓的面积,根据轮廓的面积大小确定与采集图像对应的fsu设备的工作状态。
[0103]
如此,本技术通过预设的目标识别模型识别采集图像的指示灯位置,然后对识别区域进行hsv颜色提取,并采用边缘检测技术确定fsu设备的工作状态,从而极大地提高了对fsu设备工作状态识别的效率和准确率。
[0104]
进一步地,基于上述本技术fsu设备工作状态的ai智能检测方法的第一实施例,提出本技术fsu设备工作状态的ai智能检测方法的第二实施例。
[0105]
在本实施例中,在上述步骤s10:基于预设的目标识别模型识别采集图像中的指示灯位置之前,本技术fsu设备工作状态的ai智能检测方法还包括:
[0106]
步骤s60:将训练数据输入至基于yolo目标检测算法的初始目标识别模型中进行训练,以得到包括权重参数文件和目标检测框的目标识别模型,其中,所述训练数据为已使用检测框标注指示灯位置的fsu设备图像。
[0107]
在本实施例中,终端设备使用大量已用检测框标注指示灯位置的fsu设备图像作为训练数据,将该训练数据输入至基于yolo目标检测算法的初始目标识别模型中进行训练,初始目标识别模型自动提取训练数据中的数据特征,训练后得到包括权重参数文件和目标检测框的目标识别模型,权重参数文件用于识别fsu设备图像中指示灯位置,目标检测框用于标注识别到的指示灯位置,目标检测框形状优选为矩形。
[0108]
基于此,在一种可行的实施例中,步骤s10,包括:
[0109]
步骤s101:将采集图像输入至所述目标识别模型;
[0110]
步骤s102:根据所述权重参数文件识别所述采集图像中的指示灯位置,并通过所述目标检测框标注所述指示灯位置。
[0111]
在本实施例中,终端设备将待检测的fsu设备的采集图像输入至训练好的目标识别模型当中,然后,基于该模型,终端设备根据模型中的权重参数文件对采集图像进行识别,识别到指示灯位置,并通过目标检测框标注该指示灯位置。
[0112]
需要说明的是,在本实施例中,标注指示灯位置的目标检测框旁还显示识别到的框内图像与目标识别模型中的标签区域的平均相似度。
[0113]
示例性地,如图2所示,在本实施例中,终端设备采集图片训练模型,然后利用训练好的模型识别待检测设备的指示灯位置,并截取识别到的指示灯区域,然后,终端设备将截取的指示灯区域转换为hsv颜色空间,对截取的区域进行hsv颜色提取,再利用边缘检测算法识别轮廓,利用面积大小过滤干扰轮廓,从而基于过滤后的轮廓图片判断fsu设备的整体工作状态。
[0114]
此外,在一种可行的实施例中,上述状态检测方法也可应用于各类指示灯判断场
景中,如设备报警、设备工作状态监控等场景。
[0115]
如此,本技术通过yolo目标检测算法进行模型训练,该算法具有快速、精准识别目标区域的优点,训练得到的目标检测模型对fsu设备指示灯进行位置检测,提高了fsu设备的状态检测的效率,并且减少了人力成本。
[0116]
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个
……”
限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
[0117]
上述本技术实施例序号仅仅为了描述,不代表实施例的优劣。
[0118]
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本技术的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如rom/ram、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本技术各个实施例所述的方法。
[0119]
以上仅为本技术的优选实施例,并非因此限制本技术的专利范围,凡是利用本技术说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本技术的专利保护范围内。
当前第1页1  
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
网站地图